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Mechanical Properties of Multi-Year Sea Ice
Phase II: Ice Structure Analysis

JACQUELINE RICHTER-MENGE AND NANCY M. PERRON

INTRODUCTION

This report presents the ice structure analysis of
multi-year pressure ridge samples tested in the sec-
ond phase of a joint government-industry study.
The study was initiated to examine systematically
the structure and mechanical properties of ice sam-
ples taken from multi-year ridges. Interest in the
properties of multi-year ridges stems from the fact
that these ridges are the most frequently encoun-
tered, massive ice features in exposed areas of the
Beaufort and Chukchi Seas. Deep-water oil plat-
forms constructed in this area of the arctic must be
designed, therefore, to withstand the impact of a
multi-year ridge.

Both Phase 1 and Phase 1l of this program in-
volved field sampling in the southern Beaufort
Sea. The Phase I field program was conducted in
April 1981 and involved the sampling of 10 differ-
ent pressure ridges. A continuous, vertical multi-
year ridge core was also specifically obtained for
detailed structural analysis. A total of 220 uncon-
fined uniaxial constant-strain-rate compression
tests were performed on the vertically cored ice
samples from the 10 ridges. The preliminary ice
structure analysis of these test specimens indicated
that the main factor contributing to large varia-
tions in the test results was associated with the ex-
treme local variability of ice structure within a
ridge. It became apparent that a complete and use-
ful analysis of the multi-year ridge ice property
test data would require a thorough structural in-
terpretation of each test sample.

Additional multi-year ice from four ridges was
collected in April 1982 for the Phase II tests.
These field samples included horizontally and ver-
tically cored ice samples taken in close proximity
to one another. The matched pairs were tested in
unconfined, uniaxial constant-strain-rate com-
pression to investigate the effect of sample orien-
tation on the test results. The remaining vertical
ice samples were used in additional unconfined

compression tests and in confined constant-strain-
rate compression, constant-strain-rate tension,
and constant load compression tests. A total of
188 tests were done in Phase II. During the Phase
11 field program, we also extracted a second verti-
cally drilled continuous ridge core to augment the
ice structure data obtained in Phase I.

This report includes the ice structure analysis of
the Phase Il multi-year pressure ridge test speci-
mens with the exception of the constant load com-
pression tests. We have also included the analysis
of the continuous ridge core taken during the se-
cond field program. The structural analysis of the
ice samples tested in Phase I is presented in
Richter-Menge et al. (1987). Discussions on the
field sampling program and the test results and
analyses for Phases [ and Il can be found in Cox et
al. (1984, 1985, respectively).

SAMPLE ANALYSIS

The structural characteristics of the continuous
multi-year ridge core and the Phase Il ridge test
specimens were evaluated using the same tech-
niques described in Richter-Menge et al. (1987).
Briefly, ice thin sections were prepared from the
sample after testing (Fig. 1). If a sample was de-
stroyed during the test, end pieces taken immedi-
ately adjacent to the test specimen were used to in-
terpret the structural composition of the sample.
The ice type was determined by studying the pho-
tographs taken of the thin sections in crossed
polaroid light.

The ice type of each sample was described ac-
cording to the multi-year pressure ridge ice struc-
tural classification scheme summarized in Table 1.
Figure 2 shows a series of thin sections, photo-
graphed between crossed polarizers, that illus-
trates the principal structural characteristics of
each ice type. This structural classification scheme
divides the ice into three major ice-texture categor-
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1

@ End Piece

Figure |. Sections used in
the analysis of the struc-
tural characteristics of the
tested ice samples.

Granular Ice
(Type I)

Healed Fracture
(Type ILA)

Table 1. Structural classification scheme for multi-
year pressure ridge ice samples.

Ice type Code Structural characteristics

Granular I Isotropic, equiaxed crystals
Columnar 11 Elongated, columnar grains
1A Columnar sea ice with c-axes normal
to growth direction; axes may or
may not be aligned
11C Columnar freshwater ice
Mixed I Combination of Types | and I1i
I11A Largely Type I1 with granular veins
HIB Largely Type | with inclusions of
Type 11 ice (brecciated ice)

Columnar Ice
{Type II)

Brecciated
(Type IB)

L1111

Figure 2. Structural characteristics of multi-year ice types.

ies: granular, columnar, or a mixture of columnar
and granular ice. If a sample was classified as col-
umnar or contained large (= 10 cm) fragments of
columnar ice, the ice thin sections were analyzed
on the Rigsby universal stage (Langway 1958). Us-
ing these measurements we defined the mean angle
between the crystallographic c-axes and the load
direction (o:c) and the degree of alignment of the
c-axes (° spread).

We also used the thin section analysis to deter-
mine the angle between the columns, or direction
of elongation of the crystals, and the load (¢:2). In
an undeformed sheet of first-year sea ice the crys-
tals are elongated vertically (¢:2 = 0°), parallel to
the growth direction of the sheet. The c-axes of
these crystals are usually located in the horizontal
plane of the ice sheet, normal to the elongation di-
rection of the crystals. By observing the orienta-
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tion of the crystaliographic c-axes and the direc-
tion of elongation of the crystals in the ridge sam-
ples, we can determine the arrangement of some
of the columnar fragments of first-year sea ice
that have been incorporated into a ridge. The pho-
tographed thin sections of each sample helped to
confirm these measurements.

Note that all of our samples, both horizontally
and vertically cored, were cylindrical. The com-
pressive or tensile load was applied along the cyi-
indrical axis of the samples. For vertically cored
samples then, o:z also represents the angle be-
tween the direction of elongation and the vertical.
Thin sections taken perpendicular to the load were
used for the crystallographic measurements to
avoid misinterpretation as a result of apparent dip
and plunge.

The granular ice in the thin sections was not an-
alyzed on the universal stage because the grain size
was too fine, averaging 1 mm in diameter. The
granular ice was observed between crossed polar-
izers, and the crystals appeared to be randomly
oriented.

The maximum, minimum, and mean grain sizes
of the columnar and/or granular crystals in each
sample were estimated by using the thin section
photographs. Each photograph included a milli-
meter scale next to the thin section for grain-size
analysis. The grain-size measurements in the ten-
sion tests were made at the location of the failure
plane. Unlike the compression tests, the tension
samples all failed via an extension mechanism.
The failure plane was normal to the load and easi-
ly identified in the thin section photographs. For
the compression test specimens, we based our
grain-size measurements on the textural character-
istics of the entire sample.

£he

Figure 3. Typical failure modes.
In compression: a) longitudinal
splitting, b) shear fracture, and c)
multiple shear fractures. In tension:
d) extension fracture. (From Jaeger
and Cook 1969.)

A4 T AT AT e .t a e
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Backlighting was used to determine the gross
structural features of the ice sample. Photographs
of the sample at noted positions were taken before
and after the test. The two sets of photographs
were compared to distinguish between original
and test-created ice textures in the unconfined and
confined compression tests where the ice under-
went considerable deformation. The post-test
photographs of the sample were also used to deter-
mine the mode and location of the failure. The
type of failure was described using Figure 3, taken
from Jaeger and Cook (1969).

The Phase II continuous multi-year pressure
ridge core was indexed with a vertical line along its
entire length before thin sectioning. The core was
then cut into 10-cm segments and thin-sectioned.
A continuous structural profile of this core was
prepared from the photographs taken of these thin
sections between crossed polarizers. This struc-
tural profile is presented in Cox et al. (1985) to-
gether with a detailed description of the ice struc-
ture.

CONTINUOUS MULTI-YEAR
RIDGE CORE

A schematic structural profile of the Phase II
continuous vertical multi-year pressure ridge core
is presented in Figure 4. Well-defined columnar
zones in the core, indicated by the letter C, include
a measurement of the angle between the direction
of elongation of the crystals and the vertical (o:2).
We also note whether the crystal c-axes in the col-
umnar ice were aligned or unaligned.

Nearly 50% of the ice in the Phase II core is col-
umnar. The zones of columnar ice are distributed
throughout the core, unlike the Phase I continu-
ous core in which most of the columnar ice was
concentrated at the bottom of the core. The re-
mainder of the Phase II core is a combination of
granular ice and mixed granular and columnar
crystals. The mixed ice is predominately brecci-
ated, composed of columnar fragments in a gran-
ular matrix. Based on these characteristics, it
would appear that this multi-year ridge (ridge C)
was initially formed by the compression of two ad-
jacent ice sheets. We would anticipate a much low-
er percentage of columnar ice in a ridge formed by
shearing.

As observed in the Phase I continuous ridge
core and many of the Phase I test samples, the
angle between the vertical and the direction of
elongation of the crystals in the columnar zones of
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Figure 4. Salinity and schematic structural pro-
file for the Phase I continuous multi-year pres-
sure ridge core. G = granular ice, C = columnar
ice, M = mixed granular and columnar ice.

the Phase II core is 15° or less. There is only one
exception: at 350 cm, one section of columnar ice
has a 0:z angle of 35°. This indicates that in ridge
C, the columnar blocks were lying in a near-hori-
zontal position (0:z < 20°).

TESTED MULTI-YEAR RIDGE
ICE SAMPLES

In this section we present the resuits of the ice
structure analysis of the Phase I multi-year-ridge
test specimens. Phase | results are included for
comparison whenever it is appropriate. This addi-
tional data has helped us in the interpretation of
the effect of ice structure on the Phase II test re-
sults. The structural classification and crystallo-
graphic measurements made on each Phase II test
specimen are given in Appendix A. The samples
are grouped according to test condition. The frac-
ture mode for the tension tests is not listed in these

Table 2. Columnar ice samples tested in Phase II, in-
cluding both columnar and mixed samples with 80% or
more columnar ice.

Total Total
Test Ridge  samples columnar % columnar
type no. tested samples samples

Unconfined A 9 0 0
compression C 53 20 38
Confined A 22 0 0
compression B Kk 7 21
Tension A 15 1 7
B 21 2 10
Total 153 30 20

tables since all of the samples failed via an exten-
sion mechanism (Fig. 3d). In Table 2, we have list-
ed the total number of Phase Il samples tested in
each major loading state, noting the ridges that
the samples were taken from and the number of
columnar samples in each group.

Unconfined constant-strain-rate
compression tests

The Phase II unconfined, uniaxial constant-
strain-rate compre.... «1 tests were done at two tem-
peratures (-5 and -20°C) and two strain rates (10
and 107*/s). The test parameters were chosen to
complement the unconfined constant-strain-rate
compression tests done in Phase | at the same tem-
perature, but at strain rates of 107 and 107*/s.
Matched pairs of horizontally and vertically cored
samples were tested at -5 and -20°C and a strain
rate of 107*/s to determine the effect of sample
orientation on the compressive strength of the
multi-year ice. These samples were paired accord-
ing to their location within the ridge. We have
summarized the percent granular, columnar, and
mixed ice samples at each test condition in Phase I
and Il in Table 3. As noted in the Phase I ice struc-
ture analysis report (Richter-Menge et al. 1987),
the most common ice type by far is the mixed col-
umnar and granular ice. Columnar ice was the
dominant ice type at only one Phase II test condi-
tion: -20°C and 10°*/s. The distribution of ice
types is relatively consistent among all other test
groups.

The compressive strength of the multi-year
ridge samples is plotted against sample porosity
and the structural classification is indicated for
each test specimen in Figures 5a through d. We
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Table 3. Summary of percent granular, columnar, and mixed ice samples
at each Phase I and Phase II unconfined compression test condition.

-5°C

-20°C

10%/s 107 10~

10~ 107 10~ 10~ 107

Granular 0 7 0

Columnar 22 25 16 (20)

Mixed 78 68 84 (80)

Total samples 9 69 19 (9)
tested

10 11 3 0 2
19 11 20 56 (46) 20
71 78 77 44 (54) 78

7 9 41 25 (13) 4]

( ) Vertically cored samples only.

have also included all of the crystallographic data
on the measured angle between the load and direc-
tion of elongation of the crystals (o0:2), the angle
between the load and the mean crystallographic
c-axis (o:c), and the degree of alignment in the
plane perpendicular to the elongation direction (°
spread) for the columnar and mixed ice samples.
The percentage of columnar ice in the sample is
given for the mixed ice samples and for columnar
ice samples that were not 100% columnar. We
were unable to determine the percentage of colum-
nar ice in the mixed ice samples for many of the
107%/s tests (Fig. 5a and c) since these samples were
destroyed during the test. In Figures 5b and 5d,
the horizontally cored samples are denoted.

In general, the influence of ice structure and
crystal orientation on the unconfined compressive
strength of the Phase II samples is similar to that
described for the Phase I ice samples in Richter-
Menge et al. (1987). At a strain rate of 10-*/s and
temperature of -20°C (Fig. 5d), the highest
strength samples are composed of columnar ice
with the direction of crystal elongation parallel to
the load (0:z < 10°) and a relatively small degree
of c-axis alignment (< 50°). We again observe a
rapid drop-off in the compressive strength of the
columnar samples as o:7 increases from 0°. The
mixed ice samples with a high percentage of col-
umnar ice (80% or more) exhibit characteristics
similar tc the columnar ice samples. This is evi-
dent in the tests done at a strain rate of 10~*/s and
temperature of -5°C (Fig. 5b). These mixed ice
samples lie on the perimeter of the strength vs por-
osity band. At all test conditions, 10-* and 10-%/s,
there is a tendency for the compressive strength of
the mixed and granular ice samples to decrease
with an increase in porosity. The influence of
grain size on the compressive strength of the ridge
samples appears insignificant compared to the ef-
fects of crystal orientation and porosity.

-.\-.--»- _~..;-<---: - . . X - -_'-'.~'.~_-'..-'.’J.\'_’

All of the matched sample pairs we tested were
obtained from ridge C, the same ridge that provid-
ed the continuous ridge core described in the pre-
vious section. The tests done on the matched pairs
(Fig. 5b and d) do indicate that the mean compres-
sive strength of ice samples from a multi-year ridge
is dependent on sample orientation. Vertically
cored samples tend to give a higher mean strength
than horizontally cored samples. The dependence
of mean compressive strength on sample orienta-
tion can be explained by sample ice structure. The
ice structure analysis of the ridges that we have
sampled, including ridge C, suggests that most of
the large columnar ice blocks in a multi-year ridge
that was initially formed by compression lie in a
near-horizontal position. At this orientation the
direction of elongation of the crystals or the col-
umns in these large ice blocks is near vertical. The
columnar ice samples collected from vertical cor-
ing will therefore be loaded nearly parallel to the
direction of crystal elongation (0:z = 0°). This is
the hard fail direction in columnar ice. Horizon-
tally cored columnar ridge samples tend to have an
angle of 90° between the long columns and the ap-
plied load (0:z2 = 90°). Work by Peyton (1966)
and Timco and Frederking (1986) has shown that
columnar ice samples loaded parallel to the elon-
gated crystal axes have compressive strengths 2 to
4 times higher than samples loaded normal to the
direction of elongation. Mixed ice samples with
large (= 10-cm) fragments of columnar ice are
also affected by the orientation of the columnar
ice within them. If the columnar fragments in the
sample are oriented with the direction of crystal
elongation parallel to the load (0:z = 0°), the sam-
ple will fail at a relatively high load and deforma-
tion will occur in the granular material surround-
ing the columnar fragments. The difference be-
tween the mean compressive strength of vertically
and horizontally cored samples will depend on the
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Figure 5. Unconfined, constant-strain-rate compressive strength vs por-
osity for all Phase II ridge ice samples with the structural classification
indicated for each sample. Open symbols = vertically cored samples; closed
symbols = horizontally cored samples. Crystallographic measurements indicated
next to each sample: (o:z, o:c), % columnar, ° spread.

number of columnar test specimens in the test ser-
ies and their crystallographic orientation relative
to the load. The results from the tests on the
matched ridge ice sample pairs are discussed in
more detail in Richter-Menge and Cox (1985).
The influence of the c-axis orientation relative
to the load (o:¢) on the compressive strength of the

columnar samples is evident in Figure 5d. The ma-
jority of horizontal samples tested at this condi-
tion were columnar and had an angle of approxi-
mately 90° between the direction of elongation
and the load, which was applied along the cylin-
drical axis of the test specimen (0:z = 90°). These
horizontal samples had a higher strength when o:c
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d. Tests conducted at 10~*/s and -20°C.

Figure 5 (cont’d).

was near 0°. As the o:c angle increased, the com-
pressive strength decreased significantly. This be-
havior is well documented in reports on the com-
pressive strength of horizontally cored first-year
sea ice samples [Richter-Menge et al. (1986),
Wang (1979), and Peyton (1966)). The first-year
sea ice tests have shown that the compressive
strength of horizontal samples loaded parallel to
the c-axes (o:c = 0°) is greater than the strength of
samples loaded perpendicular to the c-axes (o:c =

90°) and that both are greater in strength than a
sample where o:c = 45°,

The Phase I and II unconfined, uniaxial com-
pressive strength data is combined in a mean
strength vs strain rate plot in Figure 6. We have
noted the compressive strength of the horizontal
and vertical samples at 10-*/s separately in the fig-
ure. All of the test specimens used at the other test
conditions were from vertically cored ice. We will
compare the test results from the Phase I and 11
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Figure 6. Unconfined, constant-strain-rate mean com-
pressive strength vs strain rate. H = horizontally cored sam-
ples only, V = vertically cored samples only. The bars denote

one standard deviation.

vertically cored samples only, since the orientation
of the samples does affect the compressive
strength.

As discussed in the Phase Il report on test re-
sults (Cox et al. 1985), we would expect a power
law relationship between the ice strength and
strain rate in the ductile region between 10~* and
10-*/s (Mellor 1983). This relationship, which
plots as a straight line on log-log paper, was not
observed in our test results. The porosity varia-
tions between the Phase I and Il samples appeared
to explain this deviation. After analyzing the ice-
structure characteristics of the samples tested in
each group, however, it becomes apparent that
variations in the overall structural composition of
each test group also affect the test results.

" L S o Lo

PO SR N

The Phase I structural analysis indicated that, at
-5°C, both the 10~* and 107*/s sample groups were
characterized by an isolated cluster of extremely
high-strength columnar samples. These columnar
samples were loaded such that ¢:z < 10°. The two
Phase [ sample groups tested at -20°C did not ex-
hibit this characteristic. The structural analysis of
the Phase II ice samples tested at a strain rate of
10-*/s (Fig. 5b and d) shows that at -20°C there is
an isolated group of extremely high-strength col-
umnar samples and at -5°C there is none. These
differences are reflected in the mean strength vs
strain rate plots. At -5°C (Fig. 6a), the mean
strength of the 10~/s vertical samples falls below a
straight line drawn between 10-* and 10-* test re-
sults of Phase I. The mean strength of the 10-*/s

N

.. -
WA

ae

LA
[ ]

CL Y LA

.
2,

L
s

S

A
et

AR
P

.

~

MESEEI IS

P

.Y '; 'a"v‘ ‘. o
£ -

[

s
1
x

L e

PR T R RV AP iRt N AT L I, - . .-"_“-I'\-'\J‘, ~
TN AN O P P P R S 0 L S N o o S R i T AU R A NP L TS ES AT LW W S W,

IR

. N

)
o O
')

I‘
Ju&: \-’A



P e )

Ba? 452

. /..

TN SRS g T RS R AR BT AL R N RSN

“la? bt hat 4 8 A b bt “ g + o, .

samples tested at -20°C lies above this line (Fig.
6b).

Variations in the structural composition of the
-5 and -20°C, 107%/s tests are also likely to help
explain the apparent decrease in strength relative
to the tests done at 107*/s. We anticipated a level-
ing off in strength between 10~ and 10-? based on
work by Richter-Menge et al. (1986) on first-year
sea ice and by Blair (1986) on transversely iso-
tropic columnar, saline ice grown in the labora-
tory. Unfortunately, only a few ice samples tested
at 107%/s could be structurally analyzed since the
majority of samples were destroyed during the
tests. The ice fails in an explosively brittle manner
at these test conditions. Thin sections of the end
pieces taken immediately adjacent to the test spec-
imen were subsequently lost due to melting during
failure of the cold-storage room.

Confined constant-strain-rate
compression tests

The confined or conventional triaxial constant-
strain-rate compression tests were done using the
triaxial cell developed in Phase I (Mellor et al.
1984). This triaxial cell was designed to ramp the
radial confining pressure in constant proportion
to the axial stress being applied; ¢, > 0, = 0; and
a,/0, = constant. The Phase II confined compres-
sion tests were done at two temperatures (-5 and
-20°C), two strain rates (10* and 10~*/s), and two
0:/a, ratios (0.25 and 0.50). The axial stress and
the radial stress are represented by o, and o,, re-
spectively. A total of 55 confined compression
tests were completed. Plots of strength vs porosity
that include the structural classification and crys-
tallographic measurements of the tested ice sam-
ples are given in Figures 7a through f. In Table 4,
we have summarized the percent granular, colum-
nar, and mixed ice samples at each test condition,

The distribution of ice types at a given test con-
dition is relatively consistent. The majority of sam-
ples consists of a mixture of columnar and granu-
lar ice, similar to the Phase I and Phase I uncon-
fined compression test samples. There is one excep-
tion: at a strain rate of 107'/s, temperature of
-5°C, and confinement ratio of 0.25, there are ap-
proximately the same number of samples in each
ice type category.

We would anticipate the influence of ice struc-
ture in the confined compression tests to be similar
to that observed in the unconfined compression
tests given the common deformational mechan-
isms. In general, we did observe this to be the case.
Columnar samples with a ¢:z angle near 45° had a
low compressive strength (Fig. 7a). There was an
increase in strength as ¢:z became greater than or
less than 45°. The columnar and mixed ice samples
from ridge B, which were used in half of these
tests, tended to have a high o:z angle. Consequent-
ly, we did not observe any isolated groups of high-
strength columnar samples in the confined com-
pression tests on the multi-year ridge samples.
This should be noted when combining the results
of the confined compression tests and the Phase I
unconfined compression tests data to define the
characteristics of the yield surface. Recall that in
Phase I the columnar ice samples generally had
low 0:z angles. As we discussed in the combined
analysis of the unconfined compression test data
from Phase I and I, differences in the overall ice-
structure characteristics of the test groups do af-
fect the relative mean strengths. Addition of the
multi-year floe ice samples tested in Phase I at a
confinement ratio of 0.46 does show that in the
confined tests, columnar samples with a ¢:z angle
near 0° tend to have the highest strength (Fig. 7b
and c).

Table 4. Summary of percent granular, columnar, and mixed
ice samples at each Phase II confined compression test condi-

tion.
_5°C -20°C
o/, = 0.25 0.50 0.50 0.25 0.50 0.50
10%/s 10" 107 10° 107 107
Granular 30 11 22 22 11 11
Columnar 30 11 i1 11 11 0
Mixed 40 78 67 67 78 89
Total samples 10 9 9 9 9 9
tested
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The confined compressive strength of mixed
and granular ice samples shows a strong tendency
to decrease with an increase in porosity at all test
conditions. Those mixed ice samples with a high
percent of columnar ice (80% or more) lie on the
outside of the strength vs porosity band. As we
discussed in the previous section, this is a result of
the orientation of the columnar fragments within
the sample.

Uniaxial constant-strain-rate tension tests

Direct tension tests were done on 36 multi-year-
ridge ice samples in Phase 11 of the program. All
of these samples failed via an extension mechan-
ism as illustrated in Figure 3d. Tensile strength is
plotted against sample porosity in Figure 8. We
have included the structural classification and
crystallographic measurements for the samples in
this figure.
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Figure 8. Constant-strain-rate tensile strength vs porosity for all Phase I
ridge samples with the structural classification indicated for each sample.
Phase I multi-year floe test data is included and is indicated by a closed symbol.
Crystallographic measurements indicated next to each sample: (o:2, o:c), % colum-

nar, ° spread.
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Figure 8 (cont’d). Constant-strain-rate tensile strength vs porosity for all
Phase II ridge samples with the structural classification indicated for each
sample. Phase I multi-year floe test data is included and is indicated by a closed
symbol. Crystallographic measurements indicated next to each sample: (0:z, o:c),

% columnar, ° spread.

All but six of the multi-year-ridge ice samples
tested in tension consisted of a mixture of colum-
nar and granular ice (Table 5). Three of the re-
maining samples were columnar and three were
granular. To gain a more complete understanding
of the influence of ice structure on the tensile
strength of the multi-year ice, we have included

the Phase I multi-year floe ice test results in Figure
8. The floe ice was predominately columnar. Based
on the combined results, it appears that the tensile
strength of multi-year ice shows little dependency
on ice type. We do observe that the columnar ice
samples tend to have a higher strength than the
mixed and granular ice samples at all test condi-
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This relationship was not apparent in our test re-
sults. We did observe a tendency for the mixed
samples ice to fail in the part of the specimen
where the grains were coarser. There were excep-
tions, including mixed ice samples with columnar
fragments oriented in the hard fail direction (o:z
= 0°). These samples failed in the finer-grained
ice that surrounded the fragments. Other mixed
ice samples failed at abrupt changes in ice struc-
ture. One consistent observation was the coinci-
dence of failure planes with large (> 1 cm), isolat-
ed voids in the samples. The samples that failed at
structural discontinuities and voids are indicated
in Figure 9.

It becomes apparent on these plots that while
the location of the failure plane may be influenced
by grain size, changes in the ice structure, and
large voids, the tensile strength of the samples is
not. Instead, the porosity of the sample seems to
be the dominant characteristic influencing the ten-
sile strength of the multi-year-ridge ice samples.
This is true at all test conditions.

DISCUSSION

A total of 14 multi-year pressure ridges have
been sampled in the course of this mechanical
properties test program. We have structurally ana-
lyzed ice test specimens from 13 of these ridges. In
Table 6, we list the number and percent of colum-
nar samples tested in each of the ridges. We have
included as columnar those mixed samples that are
made up of 80% or more columnar ice. Our Phase
I and I1 test results suggest that these mixed ice
samples behave similarly to the columnar ice sam-
ples.

The amount of columnar ice varies from ridge
to ridge. As we discussed in the Phase I ice struc-
ture analysis report (Richter-Menge et al. 1987),
we believe this is due to differences in the mode of
formation of the ridge. Ridges initially formed by
the compression of one first-year ice sheet against
another contain large blocks of columnar ice. The
ice in a ridge formed by shearing, on the other
hand, is highly fragmented. Samples taken from
ridges should reflect these differences. We would
expect to get a higher percentage of columnar sam-
ples from a multi-year pressure ridge formed by
compression than from one formed in shear.

A frequency histogram of the number of colum-
nar samples in a given ¢:2 orientation is presented
in Figure 10. The frequency histogram of the
Phase I columnar samples was originally present-
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Table 6. Columnar ice samples tested in
Phase I and 11. These samples include both
columnar and mixed samples with 80% or
more columnar ice.

Total Total
Ridge  samples columnar % columnar
no. tested samples samples
Phase |
1 23 13 57
2 24 4 17
3 22 3 14
4 22 6 bl
S 22 s 23
6 12 0 0
7 23 6 26
8 24 15 63
9 24 1 4
10 24 8 k)
Phase 11
A 46 1 2
B 54 9 17
C 53 20 38
Total 3713 91 24
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Figure 10. Frequency histogram of
the Phase I and Il columnar ridge
ice samples in a given o:1 orienta-
tion.
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ed and discussed in Richter-Menge et al. (1987). In
that report we noted the relatively large number of
low 0:z measurements. Based on this observation,
we concluded that in the 10 ridges we sampled dur-
ing Phase I the blocks of columnar, first-year sea
ice that were incorporated into the ridge during its
formation were lying in a near horizontal position.
The vertically cored, columnar samples taken
from these ridges tended to have a high compres-
sive strength since they were loaded in the hard-
fail direction (0:z = 10°). We further anticipated
that the mean compressive strength obtained from
a series of tests on vertical ridge samples would be
higher than the mean value obtained from hori-
zontal samples. The horizontal columnar samples
would tend to be loaded normal to the elongated
crystal axis (0:2 = 90°), giving a lower compres-
sive strength and, hence, a lower overall mean
strength. The difference would be strongly depen-
dent on the amount of columnar ice in the test ser-
ies and the orientation of the columnar ice crys-
tals.

Phase Il unconfined compression tests on
matched horizontal and vertical pairs collected
during the second field program confirmed our
hypothesis (Richter-Menge and Cox 1985). As we
discussed earlier in this report, we found the effect
of sample orientation on the mean compressive
strength of multi-year-ridge ice samples tested at a
given condition to be significant (Fig. Sb and d).
The difference was greater in the test series with a
higher percent of columnar samples (Fig. 5d).

The results of the compression tests on matched
horizontal and vertical pairs would probably have
been different, however, had we taken our sam-
ples from ridge B. The samples taken from this
ridge tended to have a high 0:z angle, as indicated
in Figure 10. Our compression test results on the
ridge samples suggest that columnar samples with
a 0:z angle near 45° are generally weaker than
mixed or granular ice samples with comparable
porosities. Columnar samples with 15° < ¢:2 <
35° or 55° < 0:7 < 90° have strengths comparable
to the mixed ice samples. We would therefore ex-
pect the mean compressive strength of vertically
cored samples taken from ridge B to be compara-
ble to the strength obtained from horizontal sam-
ples.

Based on our sampled ridge population, it still
appears that the columnar blocks within a ridge
tend to be in a near horizontal direction with the
elongated crystal axis near vertical. The character-
istics of the ridge B columnar ice samples show us,
however, that this is not always the case. This ob-
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servation again points out the importance of the
ice structure analysis for the interpretation of
multi-year ice data. Each data group is unique
with respect to the number of granular, columnar,
and mixed ice samples and the orientation of the
columnar ice within the samples. These variations
in ice structure, combined with differences in por-
osity, will be reflected in the mean strengths.
Without a thorough structural analysis of the ice
types in all of the test groups, the combined results
of a program could lead to erroneous conclusions.
This is particularly true with respect to the com-
pressive strength of the ice, both unconfined and
confined. Our results on the strength of the multi-
year-ridge ice samples loaded in tension suggest
that, for strain rates from 107 to 10-*/s and tem-
peratures between -20° and -5°C, the tensile
strength is insensitive to ice type. More tension
tests should be done on ridge samples to confirm
this observation, as we tested only nine samples at
each test condition. This is an extremely small
number of tests, given the variability of the mater-
ial.

Ideally, we should be able to devise a system
that allows us to adjust each data set to reflect the
number of granular, columnar, and mixed ice
samples that would be found in a ‘representative’
population of multi-year ridge samples. Orienta-
tion of the columnar ice samples would also have
to be normalized. We would then be more certain
of our conclusions made on the basis of combined
data sets. It appears that this could be done by
weighting the results of each test. The difficulty
comes in defining the representative sample popu-
lation. We expect it to be a function based on the
number of ridges sampled and the number of sam-
ples taken from each ridge. Our current data set,
involving data from 13 ridges, obviously is still too
small to define this function with any certainty.

CONCLUSION

The ridge building process itself appears to be
extremely dynamic, based on the large percentage
(approximately 80%) of mixed ice samples in our
combined Phase I and II data set. It also appears
that there may be a preference for the columnar
ice blocks in a ridge to lie in a near horizontal posi-
tion. This results in a dependency between mean
compressive strength and sample orientation. Ver-
tically cored samples tend to give a higher mean
compressive strength than horizontal samples.
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At the end of the first phase of this testing pro-
gram it had become apparent that the ice structure
in multi-year ridge samples was extremely variable
and that the structure had a profound effect on
the mechanical properties of the ice. The Phase II
test results confirm this observation,

The ice structure analysis of the Phase II uncon-
fined and confined compression tests shows that
the effect of ice structure on the compressive
strength of multi-year ridge ice samples is indepen-
dent of the temperature, strain rates, and confin-
ing ratios that we used in our test series. We will,
therefore, restate the following general conclu-
sions made in the Phase I report:

¢ For columnar ice samples, the dominant char-
acteristic that influences sample strength is
crystal orientation. Columnar samples with the
direction of crystal elongation near vertical
and with a high degree of crystal c-axis align-
ment will have extremely high compressive
strengths. When the direction of crystal elon-
gation coincides with the direction of maxi-
mum shear at an angle of 45° to the load, the
columnar samples have a very low compressive
strength.

e A sample composed of both columnar and
granular ice (classified as a mixed ice sample)
will exhibit mechanical properties that are sim-
ilar to a columnar sample if it contains 80% or
more columnar ice.

® The orientation of the columnar fragments in a
mixed ice sample influences the overall com-
pressive strength and deformational character-
istics of the sample. If the columnar fragments
are oriented in a hard fail direction the sample
will have a relatively high strength. Failure in
these samples will occur in the granular materi-
al surrounding the columnar fragments.

* Mixed and granular ice samples show a signifi-
cant decrease in strength with an increase in ice
porosity.

The tensile strength of the multi-year ridge ice
samples does not appear to be significantly influ-
enced by ice structure. Rather, the porosity of the
sample is the dominant characteristic with respect
to strength.

The most significant conclusion drawn from
this study is the importance of characterizing the
ice structure of each test specimen. It becomes ap-
parent that the structural analysis is necessary for
the proper choice and interpretation of constitu-
tive parameters. Without such an analysis, the de-
velopment of a constitutive law for multi-year
ridge ice based on the data from mechanical prop-

- -

erty tests on ridge samples will be misleading. An
ice structure analysis should become a standard
procedure in all multi-year ridge programs. We
also suggest the compilation of ice structure data
taken in field sample and testing programs from
all available sources. This would provide an op-
portunity to determine representative ridge char-
acteristics and, hence, may lend insight toward the
overall ridge mechanical properties that should be
used in design codes.
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APPENDIX A: MULTI-YEAR RIDGE SAMPLE DATA

This appendix contains the results from the ice
structure analysis of the Phase 11 tests performed
on multi-year-ridge ice samples. These tests in-
cluded unconfined and confined constant-strain-
rate compression tests and uniaxial constant-
strain-rate tension tests. The test type is denoted
by UC, CC, and UT, respectively. STR.CC.-3-5/
0.5 indicates the structural analysis of the confined
compression tests done at a strain rate of 107/s, a
temperature of -5°C, and a ¢,/0, confinement
ratio of 0.5. A similar strategy was used to identify
all other test conditions. The parameters listed for

each test are identified in Index A. The sample
number RAO01-262/289 gives the location and
depth of the sample; that is, Ridge A, hole 1, at a
depth of 262 to 289 cm. At a strain rate of 107*/s
and temperatures of -5 and -20°C in the uncon-
fined compression tests, we tested matched pairs
of vertically and horizontally cored ice samples.
The vertical samples are labeled with a V and the
horizontal samples with an H. All of the other
samples in the Phase II portion of the test pro-
gram were vertically cored.

INDEX A
Column number
Compression Tension Symbol Description

1 1 om (Ibf/in.?) Peak stress or strength.

2 1 €m (GL) (%) Strain at o, determined by DCDTs over a
gauge length of 5.5 in. for the unconfined
compression tests, 10.0 in. for the confined
compression, and 4.5 in. for the tension
tests.

3 k| tm (s) Time to peak stress.

4 4 E{(GL) (10* Ib/in.?)  Initial tangent modulus determined using
strains found over the gauge length.

5 — te (s) Time to end of test.

6 — 0./ 0, Raiio of end stress at 5% full sample strain
to peak stress.

7 s n () Sample porosity at test temperature.

8 6 Classification Classification of ice texture type. | = gran-
ular, 2 = columnar, and 3 = a mixture of
granular and columnar.

9 7 % columnar Estimation of % columnar iceinthe sample.
10 8 Min (mm) Measurement of the minimum, maximum,
11 9 Max (mm) and mean columnar grain size as measured
12 10 Mean (mm) across the width of the grain.

13 11 0:z (degree) Angle between the direction of crystal elon-
gation and the load applied along the cylin-
drical axis of the sample.

14 12 ac Angle between the load and the mean crys-
tal c-axis direction.

15 13 ° spread Degree of alignment of the c-axis. UN =
unaligned, and R = random.

16 14 Min (mm) Measurement of the minimum, maximum,
17 Max (mm) and mean granular grain size.
i8 Mean (mm)

19 — Type failure Dominant failure mode. 1. = longitudinal
splitting, S = shear, and MS = multiple
shear failure.

20 17 Location Location of failed area in sample. T = top,

M = middle, and B = bottom of sample.
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